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Overview 

Timeline 
• Start date: October, 2010 
• End date: September, 2014 
• Percent complete:   

• 33% complete 
 

Budget 
• Total project funding 
     - 100% DOE 
• FY11:  $300K 
• FY12:  $400K 

Barriers 
• Developing higher energy density electrodes 
• Improving cycle life 
• Increasing lithium battery safety 
 

Partners 
• Fikile Brushett, Christopher Johnson,       

Baris Key (ANL), CEES-EFRC  
• Yi Cui (Stanford, SLAC),             

Stan Whittingham (SUNY), Gao Liu (LBNL) 
• Collaborations 
      - R. Winarski, X. Xiao – APS tomography 
 - Russell Cook (Electron Microscopy Center) 
 

 



Objectives - Relevance 

Project Areas:  

– Develop synchrotron tomography tools to better understand how 
lithiated silicon interacts with its surroundings within a three-dimensional 
lithium-ion battery electrode on cycling.  

– Develop techniques to make three-dimensional silicon-based electrodes 
with a variety of loadings, morphologies, and thicknesses.  

– Develop spectroscopic characterization tools to investigate the 
interfacial regions within a silicon-based electrode. 

– Investigate electrodeposition as a synthetic technique for copper, 
antimony, silicon, and tin-based three-dimensional electrodes. 

To overcome problems associated with silicon-based electrodes for 
lithium-ion batteries – cycling stability, safety, and cycling efficiency - that 
slow its implementation into transportation energy storage technologies. 



• Complete characterization of the interfacial region in Cu-Si metallic 
electrodes (completed Mar 2012) 
 

• Characterize the phases formed and extent of electrode homogeneity for a 
series of electrodeposited Sn-based electrodes (completed Nov 2011) 
 

• Assess the role of electrolytes and irreversible capacity and SEI formation 
in three-dimensional electrode structures (on going) 
 

• Initiate nano- and micro-tomography synchrotron effort for three-
dimensional electrodes including synthesis, cell design and cycling 
optimization (on going). 
 

Milestones 



Approach/Strategy 
APPROACH:  Develop a detailed understanding of how silicon-based electrodes operate 
when constrained by other constituents, components, and active materials.  How does 
volume expansion effect the local electrode environment and structure? 
 
STRATEGY:  Construct and characterize a series of silicon and tin based electrodes with a 
variety of three-dimensional structures and develop spectroscopic and electrochemical 
tools to look at the effect of cycling on the electrode.    
 
• Electrode Formulation  

–    Bulk Electrodes 
• 25% nano-Si – 50% PvDF – 25% C  

        (w/ G.Liu, LBNL) - BATT Anode Baseline  
• 70% Si (20-40 µm) - 20% PVdF binder - 10% AB 
• 70% Si (20-40 um)  - 30% Cu binder 

– Thin Film Electrodes 
• Si electrodeposition 
• Sn electrodeposition 

 

• Characterization 
–  X-Ray tomography studies of  
    active electrodes 

• Sn-based electrodes (improved 
XRD contrast) 
• Si-based electrodes  

– Cycling Properties 
 
• Metallic binders 
 ─    Effect of binders on rate  
  capability 

─      29Si NMR studies of  
 active/binder interactions 



Technical accomplishments: 
Substrates: Copper foam synthesis 

The porosity, thickness, and surface roughness of homemade foams is highly tunable.  
Commercial foams, however, offer the ease of reproducibility.  More commercial vendors will be 
sought in order to have varying porosities.   

(left) Electrodeposited Cu foams 
with same Sn deposition 
performed on each. (A) 1mM 
chloride concentration in Cu 
bath, (B) 4 mM chloride 
concentration in Cu bath 

(right) Calendered commercial 
foams (CircuitFoil) before and 
after calendaring to 100 μm. 



Technical accomplishments: 
Tin Electrodeposition in Confined Spaces 

Techniques to make the 
copper foams and Cu6Sn5 
porous electrodes foams 
were developed at Argonne 
as part of a previous BATT-
Anode program and the CEES-
EFRC (a) SEM micrographs of a copper foam, as-grown, (b) sintered copper foam 500°C, and (c) 

electrodeposited Cu6Sn5–Sn film on sintered copper foam. Scale bar = 100 um. 
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Cyclic voltammogram 
of aqueous Cu:Sn 

deposition solution 

Shin, H.C., Dong J., Liu, M; Advanced Materials, 2003, 15, 1610-1614 

 



Technical accomplishments: 
Silicon Electrodeposition in Confined Spaces 

Synthesis:   4 Na + 4 Si  Na4[Si4]  

Sealed Ta tube, 500 C / 12 hrs. 

Solvent: glyme 

Notes:  Very low solubility 

deposition:    Si anion     vs     Si cation 

┐4 - Synthesis:   SiCl4  

(Sigma-Aldrich, 99.99% ) 

Solvent: PC 

Solubility: Moderate  

SiCl4 + 4e-   Si + 4Cl- 

Si+4 reduction at 
-3.5V 

Na4[Si4]   4Si + 4 Na+ + 4 e- 



Technical accomplishments: 
Silicon Electrodeposition in Confined Spaces   
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(calendared) , pore sizes ~ 300μm  
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Technical accomplishments: 
Metallic Copper Binders – Simpler Electrodes 

Deduce the effect of the polymeric binder on the electrical resistance of the 
electrode while cycling 

Si + Cu(NO3)2 water 
CuSix (x = 4,6,8) 

• Cast a mixture of CuSix in an 24% PVA/NMP solution onto Cu foil 

• Heat laminate > 400 C to burn out PVA 

• Heat laminate 500 ≤ x ≤ 700C to anneal to Cu foil backing 

As made  

Cycled  

http://en.wikipedia.org/wiki/File:Formaldehyde-2D.svg


Technical accomplishments: 
Metallic Copper Binders – Simpler Electrodes 
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Cycling profile of a 
CuSi4 electrode  

Cycling of selected capacity 
limited CuSix electrodes  



Technical accomplishments: 
 Metallic Copper Binders – Simpler Electrodes 

29Si NMR is much more sensitive to 
interfacial phase formation than bulk 
techniques such as powder XRD.  

The best electrodes (cycling stability) 
appear to have none or a minimal 
amount of Cu3Si intermetallic 
formation and variation of silicon local 
environment.   

This is consistent with VLS-derived Si 
nanotubes where the intermetallic 
glue formed is localized at the base of 
the electrode.  

29Si MAS NMR 

29Si MAS NMR of CuSix samples annealed at varying temperatures 
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Technical accomplishments: 
Tomography – Looking inside the Electrode 

 Lithium (2 mm diameter) 
 

 Glass fiber separator (3 mm) 
 

 Sn /  Si electrode (2 mm)  

Cell ready for testing at 
Sector 2-BM at the APS 

• Unlike SEM and TEM, tomography sheds light on material behavior in sub-surface positions of 
porous electrodes, while cycling in realistic battery environments. [1] 

• Severe volume changes in silicon and tin can be observed.   
• Changes in porosity can be determined. 
• Thicker electrodes are currently being investigated as a means to lower battery costs. [2] 

Tomography will be useful in evaluating depth-dependent material utilization and failure modes. 

Cells are constructed in miniaturized 
form within a Torlon®  tube (X-ray 
transparent) and with flattened 
stainless steel screw leads. 

[1] P. Shearing, Y. Wu, S.J. Harris, N. Brandon, The Electrochemical Society- Interface (Fall 2011) 43-47. 
[2] J.S. Wang, P. Liu, E. Sherman, M. Verbrugge, H. Tataria, J. Power Sources, 196 (2011) 8714-8718. 



Technical accomplishments: 
 Tomography – Looking inside the Electrode 

• Electrodes being evaluated have included electrolessly deposited tin on commercial copper 
foams and silicon particles laminated with 70% active material on copper foil. 

• 2 mm punches of both electrodes can be cycled at 10- 20 μA and exhibit typical 
electrochemical behavior of Sn and Si. 

Binder-free 
Sn on Cu foil 

Silicon 
particles 
(Aldrich) 
laminated 
on Cu foil 



Technical accomplishments: 
 Tomography – Looking inside the Electrode 

3D reconstruction 

Surface area : Volume 
changes as a function of 
electrode depth (distance 
from counter electrode) are 
being analyzed to 
determine the effects of 
unequal Li+ diffusion to 
electrode regions.   

Porosity development 

• Silicon laminates have been imaged before and 
after cycling.  

• Particle pulverization and evolution in porosity 
has been observed.   

• Electrolyte degradation tests show no major 
changes in electrolyte due to beam, thus in situ 
experiments are underway. 



Collaboration and Coordination with Other Institutions  

• Partners 
 

• BATT Anode Diagnostics  
• Yi Cui (Stanford, SLAC) 
• Gao Liu (LBNL) 

• BATT Anode Tin Electrodes 
• Stan Whittingham (U Binghamton, New York) 
• Mike Thackeray (ANL) 

    
• User Facilities:   

• John Muntean (CSE-NMR Center)  
• R. Winarski, X. Xiao – APS, Tomography 
• Russell Cook (Electron Microscopy Center) 

 



Future Work 
• Methodology development: 

• Utilize new NMR capabilities to improve understanding of the microstructure 
of Si-based electrodes. 

• Collaborate with Advanced Photon Source staff to improve the data resolution.  
• Optimize synthetic techniques to improve sample quality and investigate 

morphological variables on the system  
 

• Silicon-based electrodes 
• Continue efforts to use X-Ray tomography to study the internal properties of 

electrodes. Extend work to the all-inorganic electrodes developed. 
• Work with BATT-Anode group partners to better understand capacity fade in a 

variety of electrode environments. 
 

 



Summary 
We have initiated a combined synthesis – characterization approach to better 

understand the effect of cycling on a silicon-based lithium-ion battery electrode. 
 
• Synthesis 

• Conventional bulk microcrystalline silicon lithium-ion battery electrodes have been 
compared using X-Ray tomography to ones based on silicon nanoparticles. 

• We have developed a new all-inorganic Si lithium-ion battery electrode that uses metallic 
Cu as the binder. 

• This new electrode type has 75% lower resistivity than a conventional electrode 
• Has similar cycle life to PVdF electrodes at 120% volume expansion. 

• Characterization 
• We have initiated  collaboration with microtomography development beamline scientists 

at the Advanced photon Source at Argonne.  
• Developed a cell fixture, sample preparation, and electrochemical characterization 

techniques. 
• Initiated methods to selectively deposit Si on a tungsten sample tip.  

• Utilized 29Si NMR techniques combined with powder X-Ray diffraction to better 
understand the Cu-Si phase diagram and the phases formed at the interface of Cu-Si 
lithium-ion battery electrodes. 

 


